2,706 research outputs found

    New mixing pattern for neutrinos

    Full text link
    We propose a new mixing pattern for neutrinos with a nonzero mixing angle θ13\theta_{13}. Under a simple form, it agrees well with current neutrino oscillation data and displays a number of intriguing features including the μ\mu-τ\tau interchange symmetry Uμi=Uτi|U_{\mu i}|=|U_{\tau i}|, (i=1,2,3)(i=1,2,3), the trimaximal mixing |U_{\e 2}|=|U_{\mu 2}|=|U_{\tau 2}|=1/\sqrt{3}, the self-complementarity relation θ1+θ3=45deg\theta_1+\theta_3=45\deg, together with the maximal Dirac CP violation as a prediction.Comment: 4 pages, 1 figure. Final version to appear in PR

    GPSP: Graph Partition and Space Projection based Approach for Heterogeneous Network Embedding

    Full text link
    In this paper, we propose GPSP, a novel Graph Partition and Space Projection based approach, to learn the representation of a heterogeneous network that consists of multiple types of nodes and links. Concretely, we first partition the heterogeneous network into homogeneous and bipartite subnetworks. Then, the projective relations hidden in bipartite subnetworks are extracted by learning the projective embedding vectors. Finally, we concatenate the projective vectors from bipartite subnetworks with the ones learned from homogeneous subnetworks to form the final representation of the heterogeneous network. Extensive experiments are conducted on a real-life dataset. The results demonstrate that GPSP outperforms the state-of-the-art baselines in two key network mining tasks: node classification and clustering.Comment: WWW 2018 Poste

    Summarisation of weighted networks

    Get PDF
    Networks often contain implicit structure. We introduce novel problems and methods that look for structure in networks, by grouping nodes into supernodes and edges to superedges, and then make this structure visible to the user in a smaller generalised network. This task of finding generalisations of nodes and edges is formulated as network Summarisation'. We propose models and algorithms for networks that have weights on edges, on nodes or on both, and study three new variants of the network summarisation problem. In edge-based weighted network summarisation, the summarised network should preserve edge weights as well as possible. A wider class of settings is considered in path-based weighted network summarisation, where the resulting summarised network should preserve longer range connectivities between nodes. Node-based weighted network summarisation in turn allows weights also on nodes and summarisation aims to preserve more information related to high weight nodes. We study theoretical properties of these problems and show them to be NP-hard. We propose a range of heuristic generalisation algorithms with different trade-offs between complexity and quality of the result. Comprehensive experiments on real data show that weighted networks can be summarised efficiently with relatively little error.Peer reviewe

    Probing Triple-W Production and Anomalous WWWW Coupling at the CERN LHC and future 100TeV proton-proton collider

    Get PDF
    Triple gauge boson production at the LHC can be used to test the robustness of the Standard Model and provide useful information for VBF di-boson scattering measurement. Especially, any derivations from SM prediction will indicate possible new physics. In this paper we present a detailed Monte Carlo study on measuring WWW production in pure leptonic and semileptonic decays, and probing anomalous quartic gauge WWWW couplings at the CERN LHC and future hadron collider, with parton shower and detector simulation effects taken into account. Apart from cut-based method, multivariate boosted decision tree method has been exploited for possible improvement. For the leptonic decay channel, our results show that at the sqrt{s}=8(14)[100] TeV pp collider with integrated luminosity of 20(100)[3000] fb-1, one can reach a significance of 0.4(1.2)[10]sigma to observe the SM WWW production. For the semileptonic decay channel, one can have 0.5(2)[14]sigma to observe the SM WWW production. We also give constraints on relevant Dim-8 anomalous WWWW coupling parameters.Comment: Accepted version by JHE

    Bayesian Speaker Adaptation Based on a New Hierarchical Probabilistic Model

    Get PDF
    In this paper, a new hierarchical Bayesian speaker adaptation method called HMAP is proposed that combines the advantages of three conventional algorithms, maximum a posteriori (MAP), maximum-likelihood linear regression (MLLR), and eigenvoice, resulting in excellent performance across a wide range of adaptation conditions. The new method efficiently utilizes intra-speaker and inter-speaker correlation information through modeling phone and speaker subspaces in a consistent hierarchical Bayesian way. The phone variations for a specific speaker are assumed to be located in a low-dimensional subspace. The phone coordinate, which is shared among different speakers, implicitly contains the intra-speaker correlation information. For a specific speaker, the phone variation, represented by speaker-dependent eigenphones, are concatenated into a supervector. The eigenphone supervector space is also a low dimensional speaker subspace, which contains inter-speaker correlation information. Using principal component analysis (PCA), a new hierarchical probabilistic model for the generation of the speech observations is obtained. Speaker adaptation based on the new hierarchical model is derived using the maximum a posteriori criterion in a top-down manner. Both batch adaptation and online adaptation schemes are proposed. With tuned parameters, the new method can handle varying amounts of adaptation data automatically and efficiently. Experimental results on a Mandarin Chinese continuous speech recognition task show good performance under all testing conditions
    corecore